请选择 进入手机版 | 继续访问电脑版

你的浏览器版本过低,可能导致网站不能正常访问!
为了你能正常使用网站功能,请使用这些浏览器。

PCB设计——从EMC角度要考虑三个主要因素

[复制链接]
gaosmile 发布时间:2020-3-29 11:56
关于PCB中EMC设计的问题,应该是诸多电子硬件工程师的一大心病。比如:PCB叠层时要如何考虑EMC?不同层数的板子在设计EMC的时候,需要考虑的东西是否一样?考虑到大家对类似的问题都有疑问,那边小编今天就整理了这篇关于如何做好PCB中EMC设计内容,希望对你们有所帮助。
. k& D) z8 h! p) a0 Y  F
一、器件的布局
% |+ `; x6 P) p

% d; Z  U: a% n) I% o* x" R$ Y
微信图片_20200329115124.jpg

$ t' H  x& F2 p* ?( W7 F+ W
在PCB设计的过程中,从EMC角度,首先要考虑三个主要因素:输入/输出引脚的个数,器件密度和功耗。
: B" P1 p9 d" x' R! a
一个实用的规则是片状元件所占面积为基片的20%,每平方英寸耗散功率不大于2W。* U: U1 Q5 [6 V9 o' Y; Q+ F
1 ~3 f/ E' e; y( ]! |( E' ?
在器件布置方面,原则上应将相互有关的器件尽量靠近,将数字电路、模拟电路及电源电路分别放置,将高频电路与低频电路分开。

* r1 c7 d6 w# ]
易产生噪声的器件、小电流电路、大电流电路等应尽量远离逻辑电路。对时钟电路和高频电路等主要干扰和辐射源应单独安排,远离敏感电路,输入输出芯片要位于接近混合电路封装的I/O出口处。
( J% `  b, U6 o1 h
高频元器件尽可能缩短连线,以减少分布参数和相互间的电磁干扰,易受干扰元器件不能相互离得太近,输入输出尽量远离。震荡器尽可能靠近使用时钟芯片的位置,并远离信号接口和低电平信号芯片。

/ l3 [0 v; q4 u$ |1 i
元器件要与基片的一边平行或垂直,尽可能使元器件平行排列,这样不仅会减小元器件之间的分布参数,也符合混合电路的制造工艺,易于生产。" K/ _& h" A5 ?% @: w3 ~4 o1 m
  
# V; W! h0 D! D" W. {1 w. T# }在混合电路基片上电源和接地的引出焊盘应对称布置,最好均匀地分布许多电源和接地的I/O连接。裸芯片的贴装区连接到最负的电位平面。

0 V2 e- l$ g' e% s5 F: ^* H
$ l: d6 _, y/ W* L0 k2 \& K
+ T( d( {3 |! k, s2 B

* v; f7 h7 }1 E6 B
在选用多层混合电路时,电路板的层间安排随着具体电路改变,但一般具有以下特征:

3 E7 C, ?* J0 r3 W0 t* @! k5 m4 Q) n
(1) 电源和地层分配在内层,可视为屏蔽层,可以很好地抑制电路板上固有的共模RF干扰,减小高频电源的分布阻抗。
8 e$ u% f3 g# c+ h* m0 n
(2) 板内电源平面和地平面尽量相互邻近,一般地平面在电源平面之上,这样可以利用层间电容作为电源的平滑电容,同时接地平面对电源平面分布的辐射电流起到屏蔽作用。

- y3 {( o) i: q4 B& c& w7 _( m
(3) 布线层应尽量安排与电源或地平面相邻以产生通量对消作用。

8 q+ v+ A# k) j" [9 z6 n
二、PCB走线

4 ]4 U% w" H- ^/ n( c
9 ]. w; B  M  |
微信图片_20200329115128.jpg
在电路设计中,往往只注重提高布线密度,或追求布局均匀,忽视了线路布局对预防干扰的影响,使大量的信号辐射到空间形成干扰,可能会导致更多的电磁兼容问题。
+ P( b" p) I& v9 K  u* e
5 s' h# ^" F- n7 m
因此,良好的布线是决定设计成功的关键。

4 x5 w) M# p/ g  a
1、地线的布局
/ R3 T# Z- Q# D; \0 y
地线不仅是电路工作的电位参考点,还可以作为信号的低阻抗回路。

" f* F- d( A- s5 T$ _
地线上较常见的干扰就是地环路电流导致的地环路干扰,解决好这一类干扰问题,就等于解决了大部分的电磁兼容问题。

: g/ }5 D1 g, V  u2 u
地线上的噪音主要对数字电路的地电平造成影响,而数字电路输出低电平时,对地线的噪声更为敏感。

1 i6 b) J! p6 K
地线上的干扰不仅可能引起电路的误动作,还会造成传导和辐射发射。因此,减小这些干扰的重点就在于尽可能地减小地线的阻抗(对于数字电路,减小地线电感尤为重要)。

7 h, e# J/ c4 C% s" o0 R
微信图片_20200329115131.jpg
- @2 S/ `8 S% G, m2 M; Q; H
0 ^  g/ P6 M( }# \# ?/ L* ?$ _+ L
) ?! n, J5 C. [" B! \
地线的布局要注意以下几点:
' ^3 x( w) S) Z1 R1 M
(1) 根据不同的电源电压,数字电路和模拟电路分别设置地线。

1 G* \/ p' _. B
(2) 公共地线尽可能加粗。在采用多层厚膜工艺时,可专门设置地线面,这样有助于减小环路面积,同时也降低了接受天线的效率。并且可作为信号线的屏蔽体。

0 ]% T: @# J* b! ~+ s" }
(3) 应避免梳状地线,这种结构使信号回流环路很大,会增加辐射和敏感度,并且芯片之间的公共阻抗也可能造成电路的误操作。

0 p' f) ^& i. a8 p  n! [2 u
(4) 板上装有多个芯片时,地线上会出现较大的电位差,应把地线设计成封闭环路,提高电路的噪声容限。
* ]& c4 E' ^- @1 L
(5) 同时具有模拟和数字功能的电路板,模拟地和数字地通常是分离的,只在电源处连接。
' C1 k+ l6 x, ~' P; g( e* L
2、电源电路的布局

. L) M5 I5 Q) x1 G5 q2 K
一般而言,除直接由电磁辐射引起的干扰外,经由电源线引起的电磁干扰最为常见。因此电源线的布局也很重要,通常应遵守以下规则。
4 u& W' A; R# X" {% w- S8 |6 W3 }
微信图片_20200329115134.jpg
(电源处理)
) |5 b% }" _' K6 u. @2 y
, P# U" i6 U0 _' T" r* f
(1) 电源线尽可能靠近地线以减小供电环路面积,差模辐射小,有助于减小电路交扰。不同电源的供电环路不要相互重叠。
3 ^. G' e  A$ P' L
(2) 采用多层工艺时,模拟电源和数字电源分开,避免相互干扰。不要把数字电源与模拟电源重叠放置,否则就会产生耦合电容,破坏分离度。
. R; p' _. f9 }# I4 ?/ i
(3) 电源平面与地平面可采用完全介质隔离,频率和速度很高时,应选用低介电常数的介质浆料。电源平面应靠近接地平面,并安排在接地平面之下,对电源平面分布的辐射电流起到屏蔽作用。
2 ]3 F% |/ n; F+ D
(4) 芯片的电源引脚和地线引脚之间应进行去耦。去耦电容采用0.01uF的片式电容,应贴近芯片安装,使去耦电容的回路面积尽可能减小。

5 o, i' W6 f8 w. u* O/ c7 R
(5) 选用贴片式芯片时,尽量选用电源引脚与地引脚靠得较近的芯片,可以进一步减小去耦电容的供电回路面积,有利于实现电磁兼容。
& ?4 F5 n, H$ |) c* S$ R
3、信号线的处理

8 d5 n. }. y* X) d* y
在使用单层薄膜工艺时,一个简便适用的方法是先布好地线,然后将关键信号,如高速时钟信号或敏感电路靠近它们的地回路布置,最后对其它电路布线。

+ I* m# ?+ P& D8 {
信号线的布置最好根据信号的流向顺序安排,使电路板上的信号走向流畅。
& p: f6 H3 v/ H6 n3 i5 q
如果要把EMI减到最小,就让信号线尽量靠近与它构成的回流信号线,使回路面积尽可能小,以免发生辐射干扰。

  A; Z$ X. H$ g0 `- i
低电平信号通道不能靠近高电平信号通道和无滤波的电源线,对噪声敏感的布线不要与大电流、高速开关线平行。如果可能,把所有关键走线都布置成带状线。不相容的信号线(数字与模拟、高速与低速、大电流与小电流、高电压与低电压等)应相互远离,不要平行走线。

! V6 c1 ?. O( p
信号间的串扰对相邻平行走线的长度和走线间距极其敏感,所以尽量使高速信号线与其它平行信号线间距拉大且平行长度缩小。

2 E9 U: i( H4 ?0 e" n1 @$ c- w
导带的电感与其长度和长度的对数成正比,与其宽度的对数成反比。

" p+ l8 Z! i* S- O: O+ E; {7 x
因此,导带要尽可能短,同一元件的各条地址线或数据线尽可能保持长度一致,作为电路输入输出的导线尽量避免相邻平行,最好在之间加接地线,可有效抑制串扰。低速信号的布线密度可以相对大些,高速信号的布线密度应尽量小。

- @2 z! S; Y; K, m
微信图片_20200329115138.jpg
(相邻层尽量错开平行组线)
& k8 ?7 o4 c  W/ d

& A9 r, L+ o- Y% Y, @/ ^$ {1 U; h3 r" b5 a- v2 ~
在多层厚膜工艺中,除了遵守单层布线的规则外还应注意:

0 }% x' K* y+ C5 }' E, @
尽量设计单独的地线面,信号层安排与地层相邻。不能使用时,必须在高频或敏感电路的邻近设置一根地线。
) a5 }0 Q8 U. Z. s0 g- X( ^( Y
分布在不同层上的信号线走向应相互垂直,这样可以减少线间的电场和磁场耦合干扰;同一层上的信号线保持一定间距,最好用相应地线回路隔离,减少线间信号串扰。
! V! S* T2 h0 ]' A  H0 k, N
每一条高速信号线要限制在同一层上。信号线不要离基片边缘太近,否则会引起特征阻抗变化,而且容易产生边缘场,增加向外的辐射。
0 k( \7 A/ M/ ^
4、时钟电路处理
/ R7 l& ]: u: I% z5 S
时钟电路在数字电路中占有重要地位,同时又是产生电磁辐射的主要来源。

) r5 c1 ]& O5 I
一个具有2ns上升沿的时钟信号辐射能量的频谱可达160MHz。因此设计好时钟电路是保证达到整个电路电磁兼容的关键。

  B! Q" n9 ^; v/ m0 O( o
微信图片_20200329115141.jpg
(时钟电路)
. h$ z& [0 v. V1 Z2 ]+ U

, ^  v* O" l+ Y1 e
( B/ ?" f. w1 Y2 u
关于时钟电路的布局,有以下注意事项:

$ B& b0 H7 w+ x* ]* D. V5 a/ i$ h
(1) 不要采用菊花链结构传送时钟信号,而应采用星型结构,即所有的时钟负载直接与时钟功率驱动器相互连接。

, e& o( [& e! P. x, h
(2) 所有连接晶振输入/输出端的导带尽量短,以减少噪声干扰及分布电容对晶振的影响。
( x2 {$ w5 u6 m- y- x( L: ?4 Y
(3) 晶振电容地线应使用尽量宽而短的导带连接至器件上;离晶振最近的数字地引脚,应尽量减少过孔。
) v# Z" L1 q$ |* E- s7 I7 f% W
三、工艺和部件的选取

( @0 e6 d4 z' |5 J0 p4 D5 ~  j
  ]2 J: F* B) ?1 U8 U* i! m' _( j
混合集成电路有三种制造工艺可供选择,单层薄膜、多层厚膜和多层共烧厚膜。
  T. U( m8 l' k6 Z2 O6 C
1 m  N( r& K% @2 G8 Q
薄膜工艺能够生产高密度混合电路所需的小尺寸、低功率和高电流密度的元器件,具有高质量、稳定、可靠和灵活的特点,适合于高速高频和高封装密度的电路中,但只能做单层布线且成本较高。
2 W. Q  O+ F2 ]8 t
多层厚膜工艺能够以较低的成本制造多层互连电路, 从电磁兼容的角度来说,多层布线可以减小线路板的电磁辐射并提高线路板的抗干扰能力。

4 Q, D) @/ T5 x1 e) B: A
因为可以设置专门的电源层和地层,使信号与地线之间的距离仅为层间距离。这样,板上所有信号的回路面积就可以降至最小,从而有效减小差模辐射。
7 A/ V' Z  D5 P  F" a- c

4 \% v- v  u7 D& ]/ V( T. I
其中多层共烧厚膜工艺具有更多的优点,是目前无源集成的主流技术。它可以实现更多层的布线,易于内埋元器件,提高组装密度,具有良好的高频特性和高速传输特性。
# [6 M- X! g+ h6 ~7 O
此外,与薄膜技术具有良好的兼容性,二者结合可实现更高组装密度和更好性能的混合多层电路。
9 a( A- `( G0 Y: a5 h+ h: O" p
混合电路中的有源器件一般选用裸芯片,没有裸芯片时可选用相应的封装好的芯片,为得到最好的EMC特性,尽量选用表贴式芯片。
, G. d" H& E% L" z
选择芯片时在满足产品技术指标的前提下,尽量选用低速时钟。在HC能用时绝不使用AC,CMOS4000能行就不用HC。电容应具有低的等效串联电阻,这样可以避免对信号造成大的衰减。

% S- Z* ?3 o" s" U+ Q  i& f( X
混合电路的封装可采用可伐金属的底座和壳盖,平行缝焊,具有很好的屏蔽作用。

( v0 \& Y; U/ N% g5 X6 j8 F
收藏 评论0 发布时间:2020-3-29 11:56

举报

0个回答

所属标签

相似分享

关于意法半导体
我们是谁
投资者关系
意法半导体可持续发展举措
创新和工艺
招聘信息
联系我们
联系ST分支机构
寻找销售人员和分销渠道
社区
媒体中心
活动与培训
隐私策略
隐私策略
Cookies管理
行使您的权利
关注我们
st-img 微信公众号
st-img 手机版