请选择 进入手机版 | 继续访问电脑版

你的浏览器版本过低,可能导致网站不能正常访问!
为了你能正常使用网站功能,请使用这些浏览器。

【实战经验】USB CDC类入门培训

[复制链接]
zero99 发布时间:2017-7-28 17:27
USB CDC类入门培训
2 E+ A3 C/ _! T& q) @. l7 g
1 前言4 O' y3 A4 ~" P: s. L
本文节选自2017年度USB CDC类培训内容的整理,主要目的是以方便些没有到现场参加培训的碟粉们可以参阅学习。本文力求从理论到实践,尽量给读者一个整体了解USB CDC类的窗口。当然,阅读此文,还是需要基本的USB知识,这个请读者自行预备。3 J4 P6 F3 ?/ I* k( z# v: e
7 ?# s/ w8 p* M" ~  a  j2 e+ [$ m( X
2 USB CDC类基础理论知识介绍$ w1 O& i- p6 t6 V! t3 j

/ }. u' W( D; b2.1 USB CDC类、USB2.0标准与PSTN之间的关系( K5 Q% z9 Z3 I. k3 }
CDC(Communication Device Class)类是USB2.0标准下的一个子类,定义了通信相关设备的抽象集合。它与USB2.0标准以及其下的子类的相互关系如下图所示:
, {' D& ]. F/ y' P. o5 K" S& x. D# W6 y 11.png # t6 C* R; ?$ F9 G$ `, g. s
图 1 USB2.0标准、CDC、PSTN之间的关系  F: a3 o! X: ^) L/ t( K$ p
/ U+ ?4 R$ _# K0 ]/ J3 ~2 x
如上图,USB2.0标准下定义了很多子类,有音频类,CDC类,HID,打印,大容量存储类,HUB,智能卡等等,这些在urb.org官网上有具体的定义,这里我们主要讲的是通信类CDC,CDC类下面,根据具体的应用场合,又有一些子类,这里我们主要讲的是PSTN(Public Switched Telephone Network)。从PSTN官方标准文档来看,PSTN子类是一个与电信相关的子类,而这里,我们只是将它作为一个普通的通信设备使用,并没有使用到它的一些电话特性。! H* Q) |9 E% h: C5 `( [# N
' ]1 E, Z- ]6 b
2.2 从一个具体的CDC类通信数据说起3 E7 i1 L6 p4 d9 G8 J6 u9 p
12.png
# f3 L0 S7 `' P  w9 d6 }图 2 一个具体的CDC类设备通信数据
- a  K# G, t& C& A( U9 o
+ e& d# U# K6 P" n6 F如上图,USB CDC类的通信部分主要包含三部分:枚举过程、虚拟串口操作和数据通信。其中虚拟串口操作部分并不一定强制需要,因为若跳过这些虚拟串口的操作,实际上USB依然是可以通信的,这也就是为什么上图中,在操作虚拟串口之前会有两条数据通信的数据。之所以会有虚拟串口操作,主要是我们通常使用PC作为Host端,在PC端使用一个串口工具来与其进行通信,PC端的对应驱动将其虚拟成一个普通串口,这样一来,可以方便PC端软件通过操作串口的方式来与其进行通信,但实际上,Host端与Device端物理上是通过USB总线来进行通信的,与串口没有关系,这一虚拟化过程,起决定性作用的是对应驱动,包含如何将每一条具体的虚拟串口操作对应到实际上的USB操作。这里需要注意地是,Host端与Device端的USB通信速率并不受所谓的串口波特率影响,它就是标准的USB2.0全速(12Mbps)速度,实际速率取决于总线的实际使用率、驱动访问USB外设有效速率(两边)以及外部环境对通信本身造成的干扰率等等因素组成。) p, B# Y+ I; g$ n8 s9 G
: k! {) l" T: i# n% [- O+ f- ^8 s7 P
2.3 CDC类设备枚举过程
6 K' a! z2 t, c- o1 U2 aCDC类设备与其他标准USB设备枚举过程的并没有什么特殊的地方。在设备描述符内可以使用DeviceClass=0x00, SubClass=0x00, Protocol=0x00 表示此类信息在接口描述符内给出;或者也可以使用0x02,0x00,0x00;来表明该设备为CDC类设备。或者使用0xef, 0x02,0x01表示当前为复合设备。6 a" i; X( K& p1 P& v

* N5 ]+ h: o5 _CDC类设备在枚举过程中最主要的信息存储在配置描述符内:
% v! N  O& c# V' ?* n 13.png " d8 }" ]# Z+ \- }+ u/ R4 g
图 3 USB CDC类配置描述符的结构) H$ i7 w' k* |. [
* ^' v8 q% L0 k
如上图所示,CDC类的配置描述符一般包含两个接口(Interface 0),一个控制接口,另外一个是数据接口(Interface 1), 除此之外,还有一个虚线指向的IAD(Interface Association Description),这个表示这个是不是可选的,得根据实际情况来确定其是否真实存在。/ D' z/ z8 B, _$ P2 C" B6 V% W+ S
6 `. C; B( y/ Y+ S3 `) T3 h7 s" Z, F

# r* Y  b0 U5 E5 u. F2.3 1 控制接口/ t: A" g7 e. V
控制接口下包含类描述符合一个端点(ie:0x82),这个端点(中断传输模式)为异步通知消息的端点,当设备端需要向Host端发送异步消息时,可以通错此端点来发送,但平时主机端都是通过端点0来向设备端发送控制消息的,比如那些虚拟串口的操作指令等等。
. Z, f! Q* t: D+ ]" `
5 B6 U" Y) K$ y除这异步通知端点外,控制接口下还包含CDC类相关描述符,这其中就包含Header描述符,Call Management描述符,ACM描述符以及Union描述符。这些功能描述符整合在一起用来描述此USB设备的一些功能特性,比如AT指令支持情况,ACM模型下的指令集支持情况,以及还有哪些接口与此接口一起对应Host端的一个功能(驱动)。# X; j. n4 \( w0 D0 w
3 n) R) p9 u" [4 q+ w8 U& i
在具体配置描述符内的控制接口内,功能描述符紧跟在接口描述符后,最后才是端点描述符。
: \/ w2 V- h2 ?( {: m! q# O
+ k' a# Y' @4 G●   控制接口
1 w- B% L# F4 _+ H 14.png ) {- @. y  \# U6 `
图 4 控制接口描述符
, c6 e3 j) a' d6 y; d! _" }* A: O8 \' l2 L& i" d! r$ _
控制接口主要用来做设备管理和电话管理(可选),设备管理涉及到请求(request)和通知(notification),端点0一般用做请求,一般用来控制和配置设备的运行状态,而非0端点(0x82)一般用作异步事件通知,设备端通过此端点向主机端发送设备内部的一些事件,比如串口状态变化事件,电话状态改变等等。1 U1 @, I% {0 c) S! G$ a
& g2 q+ r: w/ p3 _! _  n0 g4 E; S
这里使用到ACM模型,后续将讲到这个模型,并且这里指明使用到V250版本的AT指令,这些指令是与电话相关的,但在我们这里讲的CDC通信实际上并不需要使用这些与电话相关的指令,它只是简单通信而已,这里指出AT指令也没有关系,只是实际不用它而已。
1 C2 f0 m  T7 D( c) m/ q5 [' _, W
如上图,bNumEndpoints表示此接口下包含的端点数,这里为1个,即那个异步通知端点。bInterfaceSubClass为0x02,ACM通信模型,bInterfaceProtocol表示AT指令集的版本,虽然这里举例为V2.50,但实际上并没有使用到任何AT指令,因此它放
0 ]5 b) ]3 E4 [0 ^7 o) t* F- A- u$ @' v/ J& V
●   Header功能描述符
: y9 Y) `8 b* N/ Y! }) J 15.png & g6 U, l* y6 B' D) E: C& v' Q
图 5 Header功能描述符
/ e5 h7 X5 N$ G) d2 t0 H6 S: I$ W- A8 B" ^! y# v4 t! I0 a
Header功能描述符表示功能描述符的开始,其他紧跟的内容就是此设备的功能描述符的内容。bcdCDC表示的是CDC的版本。) S; Q% h2 N- t$ j, z5 \& B

2 @$ Q1 |, ?' K: \7 s●ACM功能描述符% b. W5 F% l0 w. |" P4 K
16.png $ G" ^3 V) X2 f$ ?
图 6 ACM功能描述符1 ^* W6 `+ ]2 F& |

) o; A8 T; S" C% o" w% EACM(Abstract Control Model),即抽象控制模型,PSTN下,除了ACM模型还有还有DLM(Direct Line Mode), TCM(Telephone Control Model)。
9 v9 G' G( X7 V$ ]# P2 g& _; r; W$ ?2 U0 R* W8 F; O6 u
PSTN定义了三种模型LM(Direct Line Mode),ACM(Abstract Control Model)和TCM(Telephone Control Model).
3 _$ z- o/ }8 O( U      •    DLM模型下,USB设备直接将模拟信号转化为数字信号,并放到USB上传输,数据接口直接使用Audio类传输音频数据,控制接口传输的也都是些比较原始的指令,比如脉宽设置,发送脉宽等等;
+ W! ]) O8 v8 q      •    ACM模型则可以很好的支持AT V250指令集,数据接口可以使用Audio类或CDC DATA,控制接口传输的也是比较抽象的高层指令,比如设置、获取波特率,设置获取与通信相关的参数等等,而AT指令可以通过控制接口或者数据接口,这个在控制接口下的功能描述符Call Management Descriptor中指明。
9 G: p1 }) U. V4 v      •    TCM是指在物理上存在多个连接,可以将接口0和接口1分别对应到不同的物理连接上。1 H; T6 g  S6 y% H: |
此外,不同的通信模型对应的指令集合(控制指令)也是不同的,而上图中bmCapliblities为位图,内部bit0~bit3分别表示4类控制指令集在此设备的支持情况。
0 ~& M3 H6 Q$ V7 y# N  B8 {
" m* k7 `4 v2 u" v' [/ @7 u0 j) W 17.png   \: _0 J( p! h) e3 p% a( p
图 7 ACM模型下的控制指令集
" V! n) S! N  u. H! d) t
+ y. n4 e. E% q+ a4 e& Z0 M如上表,为ACM模型下的指令集,但不是说,这些个指令就一定会在ACM模型下存在,此USB设备是不是支持此某个控制指令,还得看bmCapliblities这个参数具体对应位是否使能。
+ ]' P  t6 e& X! u1 x* v- ]) x
在实际的STM32 USB协议栈中,针对于CDC类,使用LineStateCoding,GetLineCoding,SetControlState类指令,用来读取,设置串口波特率以及串口的打开与关闭,这个具体的映射实现是通过主机端的驱动来实现;从设备端来看,当设备端收到这些来自主机端操作串口的控制指令时,这些指令具体怎么执行完全取决于设备端,也就说,所有的这些操作,比如设置波特率为115200,对于设备端来说这个只是个通过SetLineCoding指令传过来的一个参数而已,具体怎么处理这个参数,取决于设备端应用程序具体怎么处理这个参数,这个有用户来处理,这个115200波特率与USB本身的波特率12Mbps(全速)是没有关系的。( t0 ?+ h5 r6 R; z- M

5 f3 ?/ Y  L% d" H" y4 j● Call Management功能描述符
8 h6 U5 v1 X' e2 A$ {0 R/ L 18.png
3 y, w0 X* h8 A图 8 Call Management功能描述符
% G) M5 J* j, @0 Y1 \4 o6 T' N- T) h0 k% s% O! Z) v% Y9 I. M
Call Management描述的就是电话相关的东西,AT指令集的支持情况。但在这里,我们并没有用到任何与电话相关的指令,因此bmCapabilities下的位图各个位都是为0:Bit0:是否支持电话相关的指令(AT指令集);Bit1:电话相关的指令(AT指令集)是否经过Comm. Class Interface; bDataInterface表示如有电话时,电话数据内容对应的接口号。
- a/ A8 Q+ I1 s1 K# V2 q3 z8 T0 f
●  Union功能描述符' @2 E9 w, {% e% z) ?7 y( q7 @* g
19.png . k, g. y# ]$ X/ v
图 9 Union功能描述符3 o* g5 d% n$ g3 }$ d8 s4 C/ i0 r
5 |6 _% X2 L6 a# f. v# u
Union描述符就是用来告诉主机端,哪些接口是联合在一起的,对应着一个功能,这个功能需要主机装载对应的驱动来实现,因此,功能与驱动是一对一的关系。这里bControlInterface值为0,则表示接口0为控制接口,bSubBoardinateInterface0值为1,表示接口1为控制接口0的下级接口,即数据接口。在CDC标准中,控制接口是必须的,而数据接口是可选的,因此,数据接口为控制接口的附属。& \; O3 g$ i$ y

& @& n. ^. I  a* v: ~2.3.2 数据接口2 J2 l! L) Q0 F+ j% E* l
21.png
* \9 g# s8 ~* d图 10 数据接口
. e9 b$ H1 L2 g4 N3 c
& N9 N# @& @6 L3 x1 r数据接口比较简单,就是数据通信的,用到两个端点IN/OUT 0x81/0x01,为块传输类型。
& [; }8 F7 m; D
' e2 B3 [; Q4 T0 K( ?1 J; j1 A3 R2.3.3 IAD(Interface Association Descriptor)
  s5 ^8 G) t; m( r9 h7 t+ X+ [ 22.jpg
7 D7 h/ @8 s$ H2 Y* D" d8 u图 11 IAD描述符
+ e7 L! j5 {5 H7 g3 V9 O, W
7 C( f0 B' O4 P) d4 QUSB刚出来的时候,一开始默认是一个接口对应一个功能,而一个功能对应着主机端的一个驱动,这在当时是OK的,但是后来,人们发现,需要多个接口对应一个功能的时候,比如这个CDC,除了数据接口外还需要控制接口,这在当时是没有这方面的统一标准,于是就出了Union来表示多个接口对应一个功能的情况。再后来,USB标准协会又增加了IAD。
3 U' I2 Q8 z# Y7 _. _9 B( ?
% l4 h1 r+ \+ ]) X7 x" G, f# aIAD与Union类似,Union是旧版本下实现多个接口对应一个功能的功能描述符,而IAD是USB协会后来针对多个接口对应一个功能的情况而扩展的,旧的主机可能只支持Union方式,但IAD并不会影响旧版本主机对设备的识别,因为旧版本主机会通过Union来识别哪些接口是联合在一起的,对于IAD则跳过忽略;而新版主机则可以通过IAD来识别,跳过忽略老的Union,因此两者可以完美兼容,互不影响。因而主机端可以精确地装载对应的驱动。6 ^8 {* M+ I7 M; {! x

( s2 h7 X$ ]9 _! _# BIAD只用在设备描述符中只用了device class code,并且指明了使用IAD来识别设备,比如bDeviceClass: Miscellaneous (0xef), bDeviceSubClass: Common (0x02), bDeviceProtocol: Interface Association Descriptor (0x01)就是一个例子; 0x02,0x00,0x00是另外一个例子。& r7 k, x4 E4 K, g6 g

- O' _. e# T& O+ |9 [' e9 ~  |如上图,bFirstInterface值为0,表示第一个接口个接口0,默认为控制接口;bInterfaceCount值为2,标志此功能总共存在2个接口,那么第二个接口就是接口1,因为USB2.0 IAD ECN补充标准规定,这里提到的接口号必须是连续的,也就是说,接口0为第一个控制接口,那么接口1则为数据接口。" b$ {- D# b/ v* W& ]9 e) h, W
6 D! k" p2 S7 E- p6 L% U- n  p3 z
下面我们来个具体的IAD例子:
# q6 A6 D* U, P, u" g0 f 23.png 8 }$ q; o! l* [. T4 ?, ^9 ]4 b( B
图 12 IAD存在时的设备描述符" ^  |0 |. W+ v  m$ N7 ^, |4 K( n/ b, E
. Q; S, j0 R( Z# o
24.png
! N2 g, T7 G2 G/ u, h+ n. A# |图 13 IAD; Z, X; Z7 z. Y& k2 S5 S& L9 l

7 a/ r: F" m' k) x2 Q- j如上图所示,一般IAD存在的情况下,在设备描述符中DeviceClass等三个参数不再都为0x00,图12中为0xef,0x02,0x01,这个表示是复合设备,此时,可以使用IAD来定义多个接口联合起来对应一个USB驱动。从IAD中可以看出,bFunctionClass参数就定义了此IAD表示的设备为CDC类设备,ACM模型。就这样,通过IAD描述符,实现了与Union功能描述符相同的功能。
7 @& U5 \' v' i2 R
, O6 S/ g( _$ m2.3.4 ACM模型' L- U8 p$ z, T! L  x$ m8 {( A
之前我们已经在控制接口中的功能描述符中已有对ACM(Abstract Control Mode)模型的简介,也有提到过,在PSTN中,除了ACM模式,还有TCM,DLM模式。这三种模式,不同的模式下包含的控制指令集是不尽相同的,有部分控制指令可能同时存在两个或三个模式下,除了控制指令,还有异步通知消息,这个在三个不同模式下也是不相同的。' p" I: n$ D! {" z( ?" I8 y$ c+ n
31.jpg , ], C1 ^) c6 b- Y8 [4 V7 \( L
图 14 ACM模式下的控制指令集
& Z  a/ N8 \, c2 w, `% h 32.jpg 1 [8 S0 y: n) _. X
图 15 ACM模式下的异步通知消息( T5 g# }$ t$ }  n
33.jpg
' l! V' j" ~" z  [/ y" p1 Y7 f图 16 DLM模式下的控制指令集
6 d2 ]% Q$ o4 Q7 [6 p/ p9 j 34.jpg 1 {& b9 X: r$ c7 N- |1 a
图 17 DLM模式下的异步通知消息
, y# G2 u( G0 [+ X
41.jpg 3 s. b! A, t' \# q" }! u
图 18 TCM模式下的控制指令集
  o# n# W% i8 s! U( h% f. c 42.jpg
8 N4 i5 H$ D+ _) T, F& X图 19 TCM模式下的异步通知消息
$ s) A: m' j# |% A, U2 H& l7 u# c: D' k. x5 O8 R( Z( a
由图14~19可知,当设备选择了某个模型后,其控制指令集和异步通知消息也就得符合此模式下的对应集合,否则则不符合标准。这里我们主要是使用到ACM模式,因此,此ACM模式下的有Host端发现Device端的控制指令和有Device端向Host端发送的异步通知消息都是固定的那么几条指令或消息,但并不是说,只要是ACM模式,那么就表示此模式下的所有控制指令和异步通知消息都必须支持。控制指令在设备端的控制接口描述符中的ACM功能描述符中的bCapabilities字段有按7 D. _# q, H9 n$ G% K
位定义ACM模式下的控制指令的支持情况,而异步通知消息,则完全看device端的应用情况是否需要,并没有在任何描述符中指出那些消息是否支持。$ r" O& L" r2 \
( m- E$ J* j, z( F; _  l& h! F8 D
在ST给出的CDC例程中,主要是使用到了SetLineCoding指令来设置和修改虚拟串口的波特率,使用GetLineCoding来获取当前波特率,使用SetControlLineState来打开或关闭串口,这种操作是在Host端CDC驱动来具体映射实现的,至于Device端收到这些个控制指令该怎么处理,就是另外一回事了,Device端也可以完全不做任何处理,有CubeMx自动生成的CDC类代码就是这样,对接收到的任何控制指令到没有做任何处理,当然,如果需要的话,则按应用的需要来处理,这个完全取决于用户。
9 B! I) }' S2 c6 g 41.png & A" `, n' a  l
图 20 控制指令操作虚拟串口
9 @" w7 ~2 c0 E; U! |5 F5 D 42.png
4 O/ j" L  j  O" |/ X% {, ]; D1 n3 f3 h图 21 一个ACM模式下的异步通知消息例子
9 f  e0 F. @) |9 p
* ]6 t& f1 z( Z. j# K3 CDC类软件框架介绍# R0 X" \' b: J: P4 V( `/ Q
+ W" e* i( Z& P6 o  D
3.1 CDC软件框架简介* i; G) U0 R& t! |, s
43.png 1 F5 W1 k; _- l6 W5 N" O
图 22 CDC类软件框架
+ @+ p% W. e1 \; Q
. ~7 j- k8 L) n( j) D. v) g4 U如上图所示,黄色USB Device Core部分为USB设备库文件,属于中间件,它为USB协议栈的核心源文件,一般不需要修改:* ]6 h; S" O& @2 H
●    USB Device Core中,Log/debug为打印/调试开关;: N1 J9 H- X5 ~7 v
●    core为USB设备核心;% n3 A( X1 Y# R: A0 \2 K/ e
●    USB request中定义了枚举过程中各种标准请求的处理;) D; y3 F! h3 M$ k
●    I/O request为底层针对USB通信接口的封装。0 P, B  Z4 K. `* P( }& H) s* _/ s

- P* t1 B9 ?5 m/ x黄色USB Device Class部分为USB类文件,也属于中间件,USB设备库,目前ST DEMO中支持的类有HID, Customer HID, CDC, MSC, DFU, Audio, ST提供了这些类的源码框架,其他的Class或者是复合设备需要自己根据实际需求情况进行扩展或定制。如果用户需求只是需要一个标准类,比如CDC通信,那么最好就使用现成的代码,不需要做任何修改就可以实现这个CDC类通信的功能。
: f" K* l5 Y3 H' x2 |
% _; K; L5 H) J: {3 r  _蓝色USB Device HAL Driver为HAL库部分,是对USB外设接口的封装,属于底层驱动,不需要修改,它分为PCD和LL Driver,PCD处于LL Driver之上。
- Z  ~  x0 X+ f) f, j) b8 o* m  l$ w' Z" w6 q
洋红色USB Device Configuration为USB配置封装,位于USB底层HAL层驱动与中间件USB协议栈之间,一方面向上层(USB设备库)提供各种操作调用接口,另一方面,向底层USB驱动提供各种回调接口。正是由于它的存在,使得USB协议栈(USB设备库)与底层硬件完全分离,从而使USB设备库具有更加兼容所有STM32的通用性。USB Device Configuration为开放给用户的源文件,用户可以根据自己的某些特殊需要进行修改,也可以使用默认的源文件,假如没有任何特殊要求的话,我们使用默认即可。
# i4 E6 C5 Q% U8 ^; G; r7 l9 A. }" O: B
Application为应用层,USB Device Class有可能将自己对应该的操作接口封装在一个操作数据结构中,由应用来具体实现这些操作,在系统初始化时,由应用将已经定义好的操作接口注册到对应的USB类中,比如usbd_cdc_if, 就这样,使得应用层的应用代码与属于中间件层的USB协议栈分离。同时,USB协议栈会将一些字符串描述符放到APP中,当USB初始化时将这些已经定义好的字符串通过指针初始化到USB协议栈中,以便后续需要时获取。5 e& x% b7 T* Z0 G2 I9 h# a

7 Z7 h/ f6 X0 C. t* l7 S- r5 M
/ i9 c0 V- _' e$ |. u# J9 S( x3.2 工程源码文件与软件框架的对应关系
) O. M/ v+ {+ d# @; U 44.jpg
; y# D& z9 e0 a7 S  d0 T2 T图23 CDC工程中源码与软件框架的对应关系: ]' ^7 i0 O+ C2 f4 h7 J9 y
9 e8 w! q" k5 H3 y& i9 z% c
3.3 USBD内核与USBD_CDC的关系3 O7 R- x2 z: D
3.1节中,我们已经提到过ST官方Cube库中提供的官方USB协议栈,主要是包含了USBD内核与USB各种类。USBD内核一般是固定的,用户一般不需要修改,但USBD类,如果用户需要修改或者扩展,比如复合设备或者用户自定义设备,还有就是,ST目前官方提供的USB设备类的DEMO程序并没有囊括所有USB类,因此,若用户需要实现这些官方提供DEMO之外的USB类时,则用户需要根据自己的需要来定制化自己的USB类,那么又该如何开始呢?/ ~9 \  B  z8 N2 }+ D( r( n  f
( n7 G* w2 O: @2 [# \
我们已经知道,ST提供的USB协议栈中已经有USBD内核,且这个内核源文件一般是不需要修改的,那么这里我们需要自定义这么一个USB类,那么我们首先得知道,这个我们需要自定义的USB类是如何与USBD内核打交道的?+ g* w& a5 a( U
6 E" V# q3 C! x
USB协议栈将所有USB类都抽象成一个数据结构:USBD_ClassTypeDef,其定义如下所示:7 b- P" b, n  s# X4 S# W* p
45.jpg
1 J" \/ W4 ~6 Z6 z 46.png & T1 R- L+ e2 V# t8 D2 `# {
* w* l3 h, y' a% P/ w+ a
这个结构体是一个抽象类,定义了一些虚拟函数,比如初始化,反初始化,类请求指令处理函数,端点0发送完成,端点0接收处理,数据发送完成,数据接收处理,SOF中断处理,同步传输发送未完成,同步传输接收未完成处理等等;用户在实现自己具体的USB类的时候需要将它实例化,USBD_ClassTypeDef结构体是USBD内核提供给外部定义一个USB设备类的窗口,而USB类文件(如usbd_cdc.c)实际就是实现这个结构体具体实例化的过程。最后将这个具体实例化的对象注册到USBD内核的同时, USBD内核与USBD类也进行了关联。
- l# F) o/ E% t0 A' S+ p 47.jpg 4 l7 h8 W2 t$ d0 V. e/ s2 Y
图 24 USBD核与CDC类的关系
9 F) K! O' m& X1 y/ v
3 ]1 j8 ?  V- X, |3 ^6 q......   ......  1 r# Z/ _$ V( W' |
( x$ v5 k; p4 F! `& _2 k* m! o

. e9 X$ h' S1 i. Q5 E3 Z  T  k* x. x) ~) J: H3 W" F
由于帖子过长,更多详细信息下方文档中的PDF及代码!
9 H, K6 Y$ H4 Z; T  }6 v7 t
# G$ K) W. H; u% c- W. T' r
3 G5 J6 q: U" }
; p) u. j# {; m' B$ A3 ^! h/ L
- r" O6 w% f; R! k

. ?1 ?, j& F# Q' B$ t文档下载
( u3 I- f& d9 x4 V! p. {" z
1 a5 ~- ^" v# Z1 x$ @
8 ], m' M4 F3 l. R3 J1 ^
更多实战经验' S* _1 k! f. h6 I( d
收藏 7 评论15 发布时间:2017-7-28 17:27

举报

15个回答
creep 回答时间:2017-7-28 17:46:16
牛逼。         
Paderboy 回答时间:2017-7-28 20:10:27
太牛逼。。
Stm32McuLover 回答时间:2017-7-28 20:27:31
破总牛逼
群星闪烁 回答时间:2017-7-30 18:24:36
牛逼,写的非常详细
asmhai 回答时间:2017-9-12 10:45:05
初级入门中,上面没看明白!!!保存下来。
asmhai 回答时间:2017-9-12 11:16:31
签到签到
枫天123 回答时间:2017-12-7 16:09:31
看不懂额
# s2 A* S/ E' I" B9 p1 i0 w' ^
zzfd97 回答时间:2017-12-14 14:31:17
太牛逼。。
wylew 回答时间:2018-1-11 15:17:01
您好!我想问下,如果在基于CDC类ACM上开发组合设备,就是基于一个设备上配置多个接口设备功能,即CDC_ACM+Mass Storage这样的有问题吗?
Mr.Luav 回答时间:2018-2-4 14:01:11
好资源啊   学习!
路平 回答时间:2018-4-27 10:49:22
厉害
liuer2004_82 回答时间:2018-5-22 21:33:56
讲解有深度。。。。。。。。。3ks
ZCShou 回答时间:2018-7-28 18:30:15
楼主有没有原培训资料的附件啊,正常培训资料里有个 CDC_training.tdc 的USB 报文
467386895 回答时间:2020-11-17 21:27:45
MARK
12下一页
关于意法半导体
我们是谁
投资者关系
意法半导体可持续发展举措
创新和工艺
招聘信息
联系我们
联系ST分支机构
寻找销售人员和分销渠道
社区
媒体中心
活动与培训
隐私策略
隐私策略
Cookies管理
行使您的权利
关注我们
st-img 微信公众号
st-img 手机版