一种基于STM32的心电采集仪设计方案

分享到:

     如今,心血管类疾病已经成为威胁人类身体健康的重要疾病之一,而清晰有效的心电图为诊断这类疾病提供了依据,心电采集电路是心电采集仪的关键部分,心电信号属于微弱信号,其频率范围在0.03~100 Hz之间,幅度在0~5 mV之间,同时心电信号还掺杂有大量的干扰信号,因此,设计良好的滤波电路和选择合适的控制器是得到有效心电信号的关键。基于此,本文设计了以STM32为控制核心,AD620和OP07为模拟前端的心电采集仪,本设计简单实用,噪声干扰得到了有效抑制。

  1 总体设计方案

  心电采集包括模拟采集和数字处理两部分,本设计通过AgCl电极和三导联线心电采集线采集人体心电信号,通过前置放大电路,带通滤波电路,50 Hz双T陷波后再经主放大电路和电平抬升电路把心电信号的幅度控制在STM32的A/D采集范围内,STM32通过定时器设定A/D采样频率,通过均值滤波的方式对得到的数字信号进行处理,最后在彩屏上描绘出心电图形,系统总体框图如图1所示。

  

 

  2 硬件设计

  2.1 主控模块电路设计

  主控模块的STM32F103VET单片机是控制器的核心,该单片机是ST意法半导体公司生产的32位高性能、低成本和低功耗的增强型单片机,其内核采用ARM公司最新生产的Cortex—M3架构,最高工作频率72 MHz、512 kB的程序存储空间、64 kB的RAM,8个定时器/计数器、两个看门狗和一个实时时钟RTC,片上集成通信接口有两个I2C、3个SPI、5个USART、一个USB、一个CAN、一个SDIO,并集成有3个ADC和一个DAc,具有100个I/O端口。主控单片机管脚排列图如图2所示。

  

 

  2.2 前置放大电路的设计

  前置放大电路是模拟信号采集的前端,也是整个电路设计的关键,它不仅要求从人体准确地采集到微弱的心电信号,还要将干扰信号降到最低,由于心电信号属于差分信号,所以电路应采用差动放大的结构,同时要求系统具有高共模抑制比、高输入阻抗、低漂移等特点。因此,选择合适的运算放大器至关重要,这里选择仪用运放AD620实现前置放大,AD620具有高精度、低噪声、低输入偏置电流低功耗等特点,使之适合ECG监测仪等医疗应用。AD620的放大倍数由1与8脚之间的反馈电阻决定,增益G=49.4 kΩRG+1,由于心电信号中含有较大的直流分量,因此前置放大电路的放大倍数不能过大,在这里选择放大约10倍,因此反馈电阻R6取约5 kΩ,为提高电路的共模抑制能力,这里用一个OP07检测R10,R4上的共模信号驱动导线屏蔽层,消除分布电容。同时用另一个OP07运放和R5,C3,R7组成右腿驱动电路,在R10,R4上检测到的共模信号经反相放大器后经R7,反馈到人的右腿,进一步抑制了共模信号和50 Hz工频干扰,这里右腿驱动有一个对交流电的反馈通路,交流电的干扰可能对人体产生危害,因此这里要注意做好绝缘措施,同时保护电阻R7尽可能大,取1 MΩ以上。此外系统电源的不稳定也对心电信号的采集有较大影响,因此在本系统中,所有运放的电源脚都并联两个0.1μF和10μF的电容退耦,提高系统的稳定性,前置放大电路的电路图如图3所示。

  

 

  2.3 带通滤波器的设计

  从前置放大电路输出的心电信号还含有较大直流分量和肌电信号,基线漂移等干扰成分,所需采集的有用心电信号在0.03~100 Hz范围之间,因此需设计合理的滤波器使该范围内的信号得以充分通过,而该范围以外的信号得到最大限度的衰减,这里采用具有高精度,低偏置,低功耗特点的两个OP07运放分别组成二阶有源高通滤波器和低通滤波器,高通滤波器由C11,C17,R7,R10组成,截止频率f1≈0.03 Hz,低通滤波器由R8,R9,C10,C13组成,截止频率约为f2≈100 Hz,系统带通滤波器的电路如图4所示。

  

 

  2.4 50 Hz双T陷波器设计

  工频是心电信号中最主要也最常见的干扰源,虽然前面的右腿驱动电路对其有一定的抑制作用,但是仍有较大部分进入了后面的电路,因此有必要设计截止频率为50 Hz的带阻电路来进一步滤除干扰,带阻电路也称陷波器,顾名思义,带阻电路就是使某特定频率范围内的信号大幅衰减,而对该频率范围外的信号几乎不产生影响。双T陷波电路是典型的带阻电路,在双T网络中,两个T型网络的参数是对称的,如图5所示的50 Hz双T陷波电路中,R13=R14=2R16=R=32 kΩ,C20=2C19=2C18=C=200 nF,本质上是由两个T型高通滤波器和低通滤波器并联组成,图5所示电路的截止频率f0=1/2πRC≈50 Hz。

  

 

  2.5 主放大以及电平抬升电路设计

  心电信号的幅度约为0~4 mV,STM32 AD转换的输入电平要求为3.3 V,因此,为了单片机能够处理采集到心电信号,需将采集到的模拟信号放大800~1 000倍。前置放大电路已放大了10倍,理论上主放大电路约放大100倍即可。为确保信号不失真,一般单级放大不超过10倍,因此,可采取两级放大的方式来达到放大100倍的效果,U9固定放大10倍,U11的反馈电阻采用可调电阻,这样就可以通过变阻器的调节达到放大100的效果。此外,因为STM32单片机的A/D采集不能采集负电平,因此这里设计了如U7所示的电平抬升电路把心电信号提到0电平以上,方便单片机采集。

 

 

  3 软件设计

  得到后要输入进行AD采集和软件,最终送LCD实现波形显示,单片机初始化后,程序设计定时器每6 ms中断一次,在中断函数里,对读取到的A/D值采取均值的形式滤除干扰,然后把之转换与彩屏对应的坐标值,在彩屏上画线实现波形的实时显示,整个系统的程序流程如图7所示。

  

 

  4 测试结果分析

  通过电极片和三导联线在人的左臂,右臂,右腿部采集经前端模拟电路和处理后,最后在示波器和彩屏上得到的如图8所示。

  

 

  从彩屏和示波器上所得的心电图来看,50 Hz工频信号和基线漂移得到了较好的抑制,从示波器上可看出,相邻两个波峰之间的时间大约为900 ms,这与真实的心电信号基本吻合,图像清晰稳定,能够较好地反映人体心电特征。

  5 结束语

  本设计实现的是以为控制核心,以,OP07为模拟信号采集端的小型心电采集仪,该设计所测心电波形基本正常,噪声干扰得到有效抑制,电路性能稳定,基本满足家居监护以及病理分析的要求,整个系统设计简单,成本低廉,具有一定的医用价值。

相关阅读:

基于STM32的多路电压测量设计方案

嵌入式设计:STM32自动量程电压表设计方案

 

采用STM32 单片机的太阳能LED街灯解决方案

STM32单片机中文官网
意法半导体/ST/STM

 

继续阅读
意法半导体推出支持高能效Power Delivery和PPS的参考设计 简化USB Type-C™电源适配器设计

中国,2021年2月26日——意法半导体推出了一个支持可编程电源(PPS)的 USB Type-C™Power Delivery 3.0参考设计,最大输出功率27W,在不连接充电线的情况下零功耗,可加快好用、小巧、高效的电源适配器设计。USB PPS有助于节省电能,减少设备充电时间和散热量,降低设备端的物料清单成本。

意法半导体推出功能完整的电能表评估板 集成低成本传感器和稳健的电隔离功能

中国,2021年2月25日——意法半导体新推出的电表评估板采用低成本的抗电分流传感器和先进的电流隔离技术实现出色的可靠性和鲁棒性,加快三相交流电能表设计,满足国际上最严格的电能表质量和精度标准。

意法半导体将在MWC 2021上海大会上展出业界领先的智能出行、电源和能源管理、物联网和5G解决方案

中国上海,2021年2月23日——横跨多重电子应用领域的全球领先的半导体供应商意法半导体(STMicroelectronics,简称ST;纽约证券交易所代码:STM)将在MWC 2021上海大会(2月23-25日)上,围绕“意法半导体,科技始之于你”主题,展示其行业领先的智能出行、电源与能源管理、物联网与5G半导体产品和解决方案。

意法半导体推出面向大众市场的 STM32WL LoRa®无线系统芯片系列产品

今天新推出的STM32WL型号包括基于Arm®Cortex®-M4内核和Cortex-M0 + MCU内核的双核STM32WL55。开发者可以完全开放和灵活地使用两个内核,双核架构可以有效地实现硬件隔离,增强网络安全性,应用更新无需重新认证设备,并增强射频和应用的实时性能。

ST携手施耐德电气,助力智能楼宇实现数字化人流量监测

意法半导体与能源管理和工业自动化数字化转型的市场领导者施耐德电气(Schneider Electric)联合推出一款物联网传感器原型。通过监测建筑物的居住率和使用率,该解决方案可以实现新型物业管理服务,提高楼宇的能源管理效率。