基于STM32的大扭矩永磁同步电机驱动系统

分享到:

 0 引言

大扭矩永磁同步电机直接驱动由于去掉了复杂的机械传动机构,从而消除了机械结构带来的效率低、维护频繁、噪声与转动惯量大等不利因素,具有效率高、振动与噪声小、精度高、响应快、使用维修方便等一系列突出优点[1]。近年来,随着电力电子技术、永磁材料、电机设计与制造技术、传感技术、控制理论等的发展,大扭矩永磁同步电机在数控机床、矿山机械、港口机械等高性能系统中得到了越来越广泛的应用[2 - 3]。

交流电机控制系统广泛采用单片机、DSP、FPGA为控制系统核心。STM32 是一种基于ARM 公司Cortex-M3 内核的新型32 位闪存微控制器,采用了高性能、高代码密度的Thumb-2 指令集和紧耦合嵌套向量中断控制器,拥有丰富的外围接口,具有高性能、低成本、低功耗等优点[4]。本文针对一种港口机械用大扭矩永磁同步电机驱动系统,采用STM32 + IPM 硬件构架设计了高性能、低成本的控制系统。

1 大扭矩永磁同步电机矢量控制原理

忽略电机的铁心饱和、涡流及磁滞损耗,不计漏磁通的影响,大扭矩永磁同步电机的电压、磁链、转矩方程分别为式中,

ψd、ψq、ud、uq、id、iq、Ld、Lq分别为永磁同步电机d、q 轴的磁链、电压、电流和电感,Rs为电枢绕组电阻,ωr为转子角速度,ψf为永磁体产生的与转子交链的磁链,Te为电磁转矩,Pn为电机磁极对数

由式( 3) ,控制id = 0 使定子电流矢量位于q轴,此时转矩Te和iq呈线性关系,实现电磁转矩的解耦控制。如图1 所示,本文的永磁同步电机采用速度、电流双闭环控制,图中ω* 为给定速度指令,ω 为速度反馈,将速度误差输入速度控制器,输出交轴电流指令i*q,通过电流PI 控制器和坐标变换,再利用SVPWM 产生IPM 开关信号。

图1 大扭矩永磁同步电机控制原理框图

2 系统设计

图2 所示为该系统结构框图, 本文采用STM32F103VCH6 主控芯片、PM800HSA120 智能功率模块为系统核心,硬件控制系统主要有: 处理器模块; 检测模块,主要包括霍尔电流检测、旋转变压器接口电路; 主电路,主要由整流、软启动、滤波、制动电路,以及PM800HSA120 及其驱动、保护、吸收电路组成; 开关电源及其他模块,主要由多路DC /DC 转换、直流母线电压保护、温度检测保护等电路组成。

图2 大扭矩永磁同步电机硬件系统结构框图

2. 1 硬件系统设计

2. 1. 1 处理器模块

STM32F103VCH6 是基于ARM 公司Cortex-M3 内核的新型32 位闪存微控制器,拥有三级流水线和分支预测功能,最高工作频率为72 MHz,可以满足本系统处理速度和实时性的需求,有两个高性能的12位的16 通道A/D 转换器、两个16 位专为电机驱动设计的内嵌死区控制6-PWM 定时器,片上还集成有SPI、USB 2. 0 等丰富的外设和接口[5]。如图2 所示,本系统充分利用了STM32 的片上资源,利用它来接收、处理电流、位置等反馈信号,接收、处理各种出错保护信号,执行电机控制算法等。

2. 1. 2 检测模块

检测模块主要包括电流检测电路和位置检测电路。其中电流检测采用莱姆电流型霍尔传感器
LT308-S7,其具有抗干扰能力强、灵敏度高、线性度好、温漂小等优点。为了减小在电流较弱时的检测误差,本文设计了如图3 所示的增益可调的电流检测电路,传感器输出的电流信号经过精密电阻采样后转换为电压信号Vi,经过电压跟随电路、三级放大电路和肖特基二极管钳位电路,输出电压Vo( Vo= 3nVi /20 + 1. 5,n 为放大倍数) 到STM32 的A/D 模块进行处理。其中开关芯片DG403 由STM32 控制,用于调整电流检测电路增益,小电流选择大增益,大电流反之。由于大扭矩电机额定电流可达232 A,若检测电路增益不可调,则当电流较弱时检测电路的放大增益相对较小,电流的检测精度会降低,而采用增益可调的检测电路可以在电流较弱时提高增益,从而减小检测误差,提高电流检测的分辨率。

 

表1 为DG403 控制信号与电流检测电路增益放大倍数的对应关系。

表1 DG403 控制信号与增益放大倍数对应表

考虑港口机械存在较强振动和冲击[6],本文利用旋转变压器YS 210XFDW9574A 进行位置检测。其解码电路如图4 所示,采用AD2S99 芯片为旋转变压器提供激励信号,AD2S90 芯片作为旋转变压器/数字转换器( RDC) 。AD2S90 以同步串行方式( SPI) 与控制芯片STM32 之间进行通讯,AD2S99 的励磁信号源的频率可以通过SEL1、SEL2、FBIAS 引脚进行设置,此处激磁频率设为10 KHz,通过AD2S99 内部处理后产生的输出信号SYNREF 与AD2S90 的REF 脚相连,可以补偿旋转变压器一次侧到二次侧的相位偏差,保证它的转换精度。

图3 电流检测电路

图4 旋转变压器解码电路

图5 所示为旋转变压器激励调理电路,旋转变压器激励信号由AD2S99 提供,激励调理电路对激励信号进行放大、滤波,激励调理电路的外部电源采用± 15 V 双电源供电,保证电路静态工作点调零; Ci1为耦合电容,隔直通交; Cf1为补偿相位用;NPN 和PNP 三极管构成推挽电路,用以消除交越失真。

图5 旋转变压器激励调理电路

2. 1. 3 主电路

主电路的整流电路采用了DD600N12 整流模块; 软启动电路采用CM600HU-24F 型号IGBT 功率开关取代继电器以提高系统可靠性,当电容器组充电到母线额定电压的80% 时,将IGBT 接入电路; 滤波电路选择16 个6800 μF 电解电容; 制动电路选择CM400HU-24F 型号IGBT 作为开关元件。考虑大电流功率器件的干扰、散热及经济性等因素,选择6 个独立单元的IPM 模块PM800HSA120的逆变电路方案。PM800HSA120 内部集成有驱动和保护电路,具有过压、欠压和温度保护功能,额定电流800 A,反偏电压1200 V,工作频率可达20 kHz。为了进一步提高IPM 的抗干扰性和可靠性,本文对其驱动电路和保护电路进行了加强设计和一些额外处理。如图6 所示,对IPM 的驱动信号进行了差分处理,将控制芯片STM32 发出的六路驱动信号利用差分驱动芯片变为12 路信号,再在IPM 驱动板上利用差分接收芯片还原为6 路驱动信号,然后经过高速光耦的隔离驱动再送给IPM,如图7 所示,以抑制共模干扰信号,增强了IPM 驱动信号的抗干扰性。图7( a) 所示为W 相的隔离驱动电路; 三相上桥臂采用隔离电源供电,三相下桥臂由一路15 V 供电,图7 ( b) 所示为W 相上桥臂隔离电源电路。

IPM 的故障信号处理电路如图8 所示,出错信号先经过光耦隔离、滤波,然后经过反相施密特触发器,一方面将电压信号反向,另一方面对出错信号进行波形整形,对干扰信号有一定的抑制作用。最后再将处理过的IPM 出错信号输入控制芯片STM32 做出相应处理。

图8 IPM 出错信号处理电路

由于IPM 的开关频率较高,而在功率回路中存在寄生电感,在IPM 开关过程中会产生很高的浪涌电压,造成对器件的冲击,影响器件的性能及使用寿命。为此设计了如图9 所示的IPM 缓冲电路,以降低IPM 开通和关断过程的电压和电流尖峰,从而降低器件开关损耗,保护器件安全运行。其中,选择超快恢复二极管RM25HG-24S 作为缓冲二极管,其耐压1200 V,最大反向恢复时间300 ns; 综合考虑本系统驱动电流频率及IPM 本身性能,将IPM 工作频率选为8 KHz,取直流母线寄生电感50 nH,根据计算及试验,最终选择缓冲电容Cs = 3 μF,缓冲电阻Rs = 12 Ω。

图9 IPM 缓冲电路

2. 2 系统软件设计

系统软件主要由主程序和中断服务程序构成,其中主程序完成各种软硬件的初始化、电机初始位置检测和电机启动等,中断服务程序包括PWM 中断子程序和外部中断保护子程序等。其中PWM 中断子程序是控制系统核心,主要完成对转子电流和速度的采集与处理、PID 调节、电压矢量的计算与选择、PWM 发生等。外部中断子程序主要包括母线电压过、欠压保护、启动保护和温度保护等。当IPM 有出错信号时,STM32 控制高级控制定时器的TIM1_BKIN 信号禁止PWM 输出,保证系统的安全,图10为PWM 中断服务程序流程图。

图10 PWM 中断服务程序

3 实验结果

如图11 所示,为本文所设计永磁同步电机控制系统的STM32 控制板及IPM 驱动板实物。对一台额定功率132 kW、额定电流232 A、输入电压380 V的大扭矩永磁同步电机进行了单元及系统实验。图12 所示为W 相上下桥臂的PWM 波形,测试PWM频率为8 KHz ( 周期125 μs) ; 图13 所示为电机空载运行时W 相的电流波形,表明控制系统的软硬件模块均可有效运行。

图11 控制电路

4 结语

本文提出了一种基于STM32 的大扭矩永磁同步电机的控制系统,设计了STM32 处理器模块、增益可调的电流检测电路、旋转变压器接口电路、IPM驱动保护电路等,采用矢量控制方法,实现了永磁同步电机速度和转矩控制,并进行了试验验证,为大扭矩永磁同步电机驱动控制提供了一种稳定可靠、高性价比的方案。

STM32单片机中文官网
意法半导体/ST/STM

继续阅读
意法半导体推出48引脚封装 扩大市面上唯一支持LoRa®的STM32WL系统芯片的选择范围

中国,2020年8月28日——意法半导体为其获奖产品STM32WLE5 *无线系统芯片(SoC)的产品组合新增一款QFN48封装,将该产品的诸多集成功能、能效性和多调制的灵活性赋能到多种工业无线应用上。

意法半导体发布STM32状态监测功能包,通过Cartesiam工具简化机器学习过程

中国,2020年7月29日——意法半导体发布一款免费的STM32软件功能包,让用户可以用微控制器探索套件快速创建、训练、部署工业状态监测智能边缘设备。

意法半导体为STM32Cube®生态系统增添新功能,提高软件开发效率

中国,2020年7月28日——意法半导体STM32Cube®软件开发生态系统发布软件更新,让用户更轻松地筛选软件示例,搜集和使用开发工具,自定义、使用和分享STM32Cube扩展软件包。

意法半导体通过两项并购,进一步增强STM32微控制器的无线连接功能

中国, 2020年7月20 日 – 横跨多重电子应用领域的全球领先的半导体供应商意法半导体,于日前宣布签署两项并购协议,收购超宽带技术专业设计公司BeSpoon的全部股本和Riot Micro公司的蜂窝物联网连接资产。在两项交易走完正常监管审批手续成交后,意法半导体将进一步提升其在无线连接技术方面的服务,特别是完善STM32微控制器和安全微控制器的产品规划。

让汽车ECU开发事半功倍,ST AutoDevKit工具包长啥样?

STM32 是工业和消费市场上非常成功的微控制器解决方案,SPC5 系列汽车微控制器也许大家还不大熟悉,不过在 AutoDevKit 生态匹配搭建的强大加持下,站在使用者的角度来看待问题,解决对方行业痛点,未来的 SPC5 也许可以成为汽车电子界的 STM32 也是很有可能的。